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NOMENCLATURE
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S.I. LITERATURE REVIEW

A. Knowledge Transfer for Evolutionary Multitasking

According to the literature review on KT [1], [2], there
are two key concerns when designing the KT process for
implicit EMT, namely when to transfer and how to transfer.
Existing implicit EMT literature has paid research focus on
addressing at least one of them and will be briefly reviewed
in this subsection.

As the first issue of the implicit KT process, when to transfer
refers to deciding whether to trigger a KT process when
reproducing each offspring. The KT intensity is a concept that
describes the frequency of performing KT operations over a
time window of the implicit EMT process. The frequency of
performing KT can be controlled by an intensity parameter
in a deterministic or probabilistic manner. There are two
branches of KT designs on this issue, including fixed-intensity
KT and adaptive-intensity KT. The early KT processes are
mainly fixed-intensity and the probability of performing KT
is unchanged with time, where the intensity-related parameter
is usually manually specified by the user before the algo-
rithm running. A representative approach is the multifactorial
evolutionary algorithm (MFEA) proposed by Gupta et al.
[3]. In MFEA, a random mating probability rmp is defined
to control the probability of performing crossover between
solutions from different tasks and is fixed along the implicit
EMT process. Later, researchers realized that the KT intensity
may need to be adjusted according to the evolution status
and the level of inter-task synergy. Then researchers began to
design adaptive-intensity KT. Bali et al. [4] proposed a mixture
sampling model coefficient to estimate the transferability of
source tasks to dynamically control rmp online. Chen et al. [5]
proposed a feedback-based strategy by reinforcing the transfer
intensity when the KT between tasks brings positive results.
Liang [6] et al. proposed to control the frequency of the KT
according to the convergence state estimated based on the
fitness difference at previous generations.

As the second issue of the implicit KT process, how to
transfer refers to the process of extracting the truly useful
materials from the source tasks that benefit the target task. In

implicit EMT, this knowledge extraction process is realized by
evolution operators. To this end, researchers have considered
characteristics of the specific EC solvers such as DE [7],
genetic algorithms (GA) [8], and evolution strategies [9] to
design compatible evolution operators for implicit KT. For the
implicit EMT algorithms using DE as the base solver, Feng
et al. [10] proposed a mutation operator by transferring the
differential vector of the source tasks to transfer knowledge.
Jin et al. [11] explore the transfer of elite solutions from the
source task as the base vector in the mutation process of DE to
improve transfer quality. Besides, Chen et al. [5] proposed to
use the binomial crossover to exchange dimensions between
solutions from two tasks. For the implicit EMT algorithms
using GA as the base solver, the simulated binary crossover [3]
is a commonly used operator in the literature. Wang et al. [12]
developed an implicit KT process that directly transfers the
sampled solutions by the GA operator performed on the source
population with an anomaly detection strategy. Besides, Zhou
et al. [8] proposed to ensemble multiple genetic operators to
perform KT, making use of the complementarity of differ-
ent evolution operators. Due to the distribution discrepancy
between source and target tasks, it is found that performing
a domain transformation on the source solutions before the
execution of the evolution operator of KT would be beneficial
[13].

S.II. PSEUDOCODE OF IMPLEMENTATION OF LEARNING
TO TRANSFER

The rollout process by the agent with base solver Genetic
Algorithm (GA) is given in Algorithm S.1. The pseudocode
of the Multi-Task Differential Evolution with Learning to
Transfer (MTDE-L2T) equipped with the learned agent is
given in Algorithm S.2. The pseudocode of MTGA-L2T
equipped with the learned agent is given in Algorithm S.3.

S.III. PROBLEM SETUP AND PARAMETER CONFIGURATION

The research objective in this section is to evaluate the
adaptability of EMT algorithms, which is measured by the
average optimization performance over many unseen MTOP
instances. Existing benchmarks such as CEC17MTOP [14]
with 9 MTOP instances and CEC19MTOP [15] with 10 MTOP
instances can not satisfy our experimental requirements due to
the very limited size of the MTOP instance set. Therefore, we
propose a new test suite to evaluate the adaptability of EMT
algorithms.

Task instance: In this study, an optimization task instance
g(x) is in the form of

g(x; f,M, xO) = f(M(x− xO)) (1)
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Algorithm S.1: Agent rollout with base solver GA

Input: Task pair T ={f1, f2}, base solver A = GA,
maximum generations Groll, parameterized agent
π(s|θ), initial population set P = {P1, ..., PNP },
population size per task N

Output: Experience data buffer D
1 D = ∅; // Empty rollout data buffer
2 Initialize population X of size N for each task by randomly

selecting initial population from P;
3 Evaluate fitness of X to obtain Y for each task;
4 Calculate initial state s by concatenating Oc and Ot;
5 g = 0;
6 while g < Gmax do
7 a = π(s|θ); // predict action by actor

network
8 Pm = X1 ∪X2;// merge populations of two

tasks
9 Empty the offspring set U1, U2 for two tasks;

10 Retrieve KT action parameters ak,1, ak,2, ak,3 for task
fk from a;

11 while number of offspring for each task < N do
12 Sample two individuals pa, pb from Pm as parents;
13 Pm = Pm − {pa, pb};
14 Get the associated task indices ka, kb of pa, pb;
15 if ka == kb then

// belong to the same task
16 Perform crossover and mutation on pa, pb to

obtain two offsprings ua, ub for task fk;
17 else if rand < aka,1 then

// perform KT between tasks
18 Sample ua by the proposed action formulation

with parameters aka,2, aka,3;
19 Perform mutation on pb to obtain ua;
20 else
21 Perform mutation on pa, pb to obtain ua, ub;
22 end
23 Add ua, ub to their corresponding offspring set

U1, U2;
24 end
25 Evaluate fitness of U1, U2 on f1, f2 respectively;
26 foreach task fk do
27 Calculate task-specific features Ot,k of task fk;
28 Calculate reward rk;
29 Update population POPk by selection;
30 end
31 r = r1 + r2;// Sum up rewards of the tasks
32 Calculate common features Oc;
33 Update state s by concatenating Oc and Ot;
34 D = D ∪ (s, a, r);
35 g = g + 1;
36 end

where f denotes a function class represented by mathematical
formula, M denotes the rotation matrix, and xO denotes the
shift vector. Here, M rotates the search landscape, introducing
variable correlations, while xO shifts the optimum. Note that
we assume the optimization task to be black-box, meaning the
structure information of the function like first-order gradient
is inaccessible to the algorithms. Herein, we denote the set
containing different function classes f as F and the set
containing different parametric configurations s : (M,xO) as
the configuration set S.

Task instance set: The task instance set Θ is used to
construct MTOP instances. A task instance set Θ is defined

Algorithm S.2: MTDE-L2T
Input: Task pair T ={f1, f2}, maximum generations Gmax,

learned agent π(s|θ∗), initial population set
P = {P1, ..., PNP }, population size per task N

Output: Best-found solutions for two tasks x∗
1, x

∗
2

1 Initialize population X of size N for each task by randomly
selecting initial population from P;

2 Evaluate fitness of X to obtain Y for each task;
3 Calculate initial state s by concatenating Oc and Ot;
4 g = 0;
5 while g < Gmax do
6 a = π(s|θ∗);// predict action by actor

network
7 foreach task fk do
8 Retrieve KT action parameters ak,1, ak,2, ak,3 for

task fk from a;
9 Sample offspring population U by base solver DE;

10 NKT = ⌈0.5 · ak,1⌉;
11 Randomly select NKT indices from {1, ..., N} to

construct a index set IKT = {j1, ..., jNKT };
12 foreach index j in IKT do
13 Sample vk,j by the proposed action formulation

with KT action parameters ak,2, ak,3 ;
14 Perform binomial crossover to obtain uk,j ;
15 Replace j-th solution in U with uk,j ;
16 end
17 Evaluate fitness Yk of U on fk;
18 Calculate task-specific features Ot,k of task fk;
19 Update population POPk by selection;
20 end
21 Calculate common features Oc;
22 Update state s by concatenating Oc and Ot;
23 Update best-found solutions x∗

1, x
∗
2;

24 g = g + 1;
25 end

by the product of a function class set F and a configuration
set S, i.e., Θ = F × S. Hence, the task instance set’s
size is |Θ| = |F| × |S|. There are two ways to configure
a task instance set either by (1) parameterization or (2)
specification. In the parameterization, the task instance set Θ
is configured by parameterizing the task e.g., by (M,xO) in a
continuous space and defining a distribution on this space. In
the specification, the task instance set Θ can be constructed
by manually specifying a number of task instances. With the
definition of Θ, we have explicitly or implicitly defined the
distribution of g as a random variable G, i.e.,

g(x) ∼ p(G; Θ). (2)

MTOP instance: An MTOP instance, denoted as T , for the
EMT algorithm to solve is a pair or a set of task instances,
which is defined as

T = {gk(x)},Xk ⊆ RDk , k = 1, 2, . . . ,K, (3)

where K is the number of tasks, Xk and Dk are the so-
lution space and the dimensionality of the solution for task
gk(x), respectively. Without loss of generality, only the box
constraints will be studied, i.e., Xk = [Lk, Uk]

Dk , where Lk

and Uk are the lower and upper boundaries of the solution
space respectively. The objective of an MTOP instance is to
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Algorithm S.3: MTGA-L2T
Input: Task pair T ={f1, f2}, maximum generations Gmax,

learned agent π(s|θ∗), initial population set
P = {P1, ..., PNP }, population size per task N

Output: Best-found solutions for two tasks x∗
1, x

∗
2

1 Initialize population X of size N for each task by randomly
selecting initial population from P;

2 Evaluate fitness of X to obtain Y for each task;
3 Calculate initial state s by concatenating Oc and Ot;
4 g = 0;
5 while g < Gmax do
6 a = π(s|θ∗);// predict action by actor

network
7 Pm = X1 ∪X2;// merge populations of two

tasks
8 Empty the offspring set U1, U2 for two tasks;
9 Retrieve KT action parameters ak,1, ak,2, ak,3 for task

fk from a;
10 while number of offspring for each task < N do
11 Sample two individuals pa, pb from Pm as parents;
12 Pm = Pm − {pa, pb};
13 Get the associated task indices ka, kb of pa, pb;
14 if ka == kb then

// belong to the same task
15 Perform crossover and mutation on pa, pb to

obtain two offsprings ua, ub for task fk;
16 else if rand < aka,1 then

// perform KT between tasks
17 Sample ua by the proposed action formulation

with parameters aka,2, aka,3;
18 Perform mutation on pb to obtain ua;
19 else
20 Perform mutation on pa, pb to obtain ua, ub;
21 end
22 Add ua, ub to their corresponding offspring set

U1, U2;
23 end
24 Evaluate fitness of U1, U2 on f1, f2 respectively;
25 foreach task fk do
26 Calculate task-specific features Ot,k of task fk;
27 Calculate reward rk;
28 Update population POPk by selection;
29 end
30 Calculate common features Oc;
31 Update state s by concatenating Oc and Ot;
32 Update best-found solutions x∗

1, x
∗
2;

33 g = g + 1;
34 end

find the optimal solution for each task, and in the case of
minimization can be represented as

x∗
k = argmin

x∈Xk

gk(x), k = 1, 2, . . . ,K. (4)

The solution spaces of tasks may not be identical and have
different lower and upper boundaries. To allow KT between
different tasks, a common strategy [3] is to perform an linear
transformation (xk − Lk)/(Uk − Lk) on xk to encode the
solutions to a unified search space Uk = [0, 1]DU , where DU =
max {Dk}. An MTOP instance T with K tasks is constructed
by selecting or sampling K pairs (f, s) from a task instance
set Θ. In this study, we assume all tasks of an MTOP instance
are drawn independently from the same distribution, i.e.,

p(T ; Θ) = p(g1, ..., gK ; Θ) =
∏K

k=1
p(G = gk; Θ) (5)

MTOP instance set: With the definition of MTOP instance
T , we can now define an MTOP instance set Γ = {Tj}NΓ

j=1

containing NΓ different MTOP instances that are randomly
sampled based on the predefined task instance set Θ. Without
loss of generality, we assume all MTOP instances are drawn
from the same distribution Tj ∼ p(T ; Θ), j = 1, ..., NΓ.
Next, we can define multiple task instance sets Θ1,Θ2, ... by
configuring F1,F2, ... and S1,S2, ... respectively to construct
multiple MTOP instance sets Γ1,Γ2, . . . . Different MTOP
instance sets represent different distributions for learning the
agent and testing the performance of the EMT algorithms. In
the experiment, we train an agent on a specific MTOP set and
test the performance on multiple MTOP sets.

A. Problem Setting

To define task instances, we employ two sets
of synthetic functions. The first function set F =
{Ackley,Griewank,Rastrigin, Sphere,Weierstrass}
includes the functions from the CEC17MTOP benchmark
[14] with highly configurable global optimum by varying xO.
The functions’ solution space is normalized to X = [0, 1]D

based on the lower bound and upper bound of each function
[16]. Based on this function set F , we build different
task instance sets Θ by defining different task optimum
distributions p(xO), thereby obtaining multiple MTOP
instance sets. The configurations of MTOP instance sets are
given in Table S.I. The shift xO lies in the search space
[0, 1]D, C is the number of clusters, xc,i is the center of the i-
th cluster, and ∆i is the radius of the i-th cluster. Specifically,
we define 10 MTOP sets with different characteristics in the
task optimum distribution range (i.e., VS, S, M, L, and VL)
and the number of distribution clusters (i.e., C1-C5). Note
that since we directly define the distribution of p(xO) in a
continuous space, the cardinality of the configuration set S
and produced task instance set Θ is infinite. For each MTOP
set in Table S.I, we learn an agent and test the learned agent
on the problem set independently. That is, we obtain 10
learned agents for 10 problem sets, respectively. Therefore,
the training MTOP instances and testing MTOP instances
are independent and identically distributed (i.i.d.), allowing
us to assess the effectiveness of L2T in adapting to different
MTOP distributions of interest.

Different from the first function set, the second function set
includes a broader spectrum of functions with diverse charac-
teristics from the black-box optimization benchmark (BBOB)
[17]. BBOB is a widely used benchmark for evaluating and
comparing black-box optimizers. The BBOB contains a total
of 24 classes of functions to serve as optimization tasks,
denoted as {f1, ..., f24}, with different landscape properties
which can be categorized into five groups, namely separable
functions {f1, ..., f5}, functions with low or moderate con-
ditioning {f6, ..., f9}, functions with high conditioning and
unimodal {f10, ..., f14}, multi-modal functions with adequate
global structure {f15, ..., f19}, and multi-modal functions with
weak global structure {f20, ..., f24}. The function ID is de-
noted as fid ∈ {1, ..., 24} and (M,xO) of the task instances
in BBOB is generated using a random number generator a
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with seed ID denoted as sid. Hence, each task instance in
BBOB is defined as a tuple (fid, sid). This setup enables
BBOB to create numerous task instances by varying the
function ID fid and the seed sid. The functions’ search space
is set to X = [−5, 5]D. The optimums of most functions
are uniformly distributed in a wide range [−4, 4]D, posing
challenges to EMT algorithms’ adaptability. For clarity, we
define the function ID set as F containing different fid and
the seed set as S containing different sid.

For the BBOB, we formulate 16 MTOP instance sets with
their corresponding configurations on F and S shown in Table
S.II. The 16 MTOP instance sets contain one set for learning
(i.e., BBOBlearn) and 15 sets (i.e., BBOB1-BBOB15) with
unseen MTOP instances for testing. That is, we obtain one
learned agent and test it on the remaining 15 MTOP sets.
Regarding the MTOP set for learning, we want to cover
different kinds of complex functions for the agent to learn
versatile KT skills for handling diverse problems. Therefore,
we select functions {f1, f3, f8, f10, f16, f20} from each of
the five function groups in BBOB. We categorize the test
MTOP instance sets into two groups to assess adaptability:
one for evaluating nearly i.i.d. scenarios and another for
potential out-of-distribution (o.o.d.) cases. The nearly i.i.d.
group contains MTOP instances with the same functions as the
learning phase but varies in real distribution coverage (BBOB1
and BBOB2) and function-type weighting (BBOB3-BBOB8),
aligning closely with the training set BBOBlearn. Conversely,
the o.o.d. group comprises entirely new functions not en-
countered during learning (BBOB9-BBOB15), with BBOB9
presenting a substantial challenge by including all functions
omitted in the learning stage. To evaluate adaptability to un-
seen yet similar functions, we create six MTOP sets (BBOB10-
BBOB15) using selected functions f2, f6, f12, f15, f21 from
BBOB’s five function groups. This problem setting allows us
to evaluate the generalization ability of the learned agent. A
notable difference between BBOB-based MTOP sets and the
ones based on CEC19MTOP is that the number of training
instances in BBOB-based MTOP sets is limited, which is a
more practical situation faced in the real world.

B. Parameter Configuration
The parameters of the proposed L2T framework are given in

Table S.I. The number of tasks of the MTOP instance is set to
K = 2. For the learning stage, the maximum number of rollout
generations is set as Groll = 100 and the target accuracy is
ξ = 1e−8. For the testing stage, we set the maximum number
of generations as Gmax = 250 which is larger than the rollout
generations Groll = 100. The parameters β1, β2, and β3 in
the reward function are set to β1 = 1, β2 = 10 and β3 =
Groll = 100, respectively. Each problem set for the testing
stage contains NΓ = 100 randomly sampled MTOP instances.
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TABLE S.I
CONFIGURATIONS OF MTOP INSTANCE SET WITH DIFFERENT TASK OPTIMUM DISTRIBUTION BASED ON CEC17MTOP

MTOP set Task optimum distribution configuration (S)

VS xo ∼ U [0.5 − ∆, 0.5 + ∆]D,∆ = 0.025

S xo ∼ U [0.5 − ∆, 0.5 + ∆]D,∆ = 0.05

M xo ∼ U [0.5 − ∆, 0.5 + ∆]D,∆ = 0.1

L xo ∼ U [0.5 − ∆, 0.5 + ∆]D,∆ = 0.2

VL xo ∼ U [0.5 − ∆, 0.5 + ∆]D,∆ = 0.4

C1 xo ∼ xc,1 + L(xc,2 − xc,1), L ∼ U [0, 1], xc,1, xc,2 ∈ [0, 1]D

C2 xo ∼ U [xc,i − ∆i, xc,i + ∆i|Z = zi]
D, Z ∼ p(Z) = 1/C,C = 2

C3 xo ∼ U [xc,i − ∆i, xc,i + ∆i|Z = zi]
D, Z ∼ p(Z) = 1/C,C = 3

C4 xo ∼ U [xc,i − ∆i, xc,i + ∆i|Z = zi]
D, Z ∼ p(Z) = 1/C,C = 4

C5 xo ∼ U [xc,i − ∆i, xc,i + ∆i|Z = zi]
D, Z ∼ p(Z) = 1/C,C = 5

TABLE S.II
CONFIGURATIONS OF MTOP INSTANCE SET BASED ON BBOB

Use purpose MTOP set Task function ID set (F ) Task seed set (S)

For learning BBOBlearn {1, 3, 8, 10, 16, 20} [1,100]

For testing nearly
i.i.d. adaptability

BBOB1 {1, 3, 8, 10, 16, 20} [500,1500]
BBOB2 {1, 3, 8, 10, 16, 20} [1000,1005]
BBOB3 {1} [500,1500]
BBOB4 {3} [500,1500]
BBOB5 {8} [500,1500]
BBOB6 {10} [500,1500]
BBOB7 {16} [500,1500]
BBOB8 {20} [500,1500]

For testing
o.o.d. adaptability

BBOB9 {1, ..., 24} −
{1, 3, 8, 10, 16, 20} [500,1500]

BBOB10 {2, 6, 12, 15, 21} [500,1500]
BBOB11 {2} [500,1500]
BBOB12 {6} [500,1500]
BBOB13 {12} [500,1500]
BBOB14 {15} [500,1500]
BBOB15 {21} [500,1500]

TABLE S.III
PARAMETER CONFIGURATION OF THE PROPOSED L2T FRAMEWORK IN THE EXPERIMENTAL STUDIES

Parameter Value

Maximum rollout generations Groll Groll = 100
Maximum generations for testing Gmax Gmax = 250

Target accuracy ξ ξ = 1e − 8
Actor-critic network structure Two hidden layers and one linear layer, # hidden neurons=64, activation function is tanh(·)

Population size N N = 50
Evolution operators for DE DE/rand/1 mutation and binomial crossover

DE-related parameters F = 0.5, CR = 0.5
Evolution operators for GA Simulated binary crossover (SBX) and polynomial mutation (PM)

GA-related parameters ηc = 2, ηm = 5
Reward function coefficients β1, β2, β3 β1 = 1, β2 = 10, β3 = Groll

PPO-related parameters γ = 0.99, λ = 0.95, ϵ = 0.2
Initial population set size NP NP = 10

Number of parallel environments Nenv Nenv = 20
Rollout data buffer size Nbuff Nbuff = 2048 ∗ Nenv = 40960

Maximum number of time steps for learning T T = 5e6 for BBOBlearn and T = 2e6 for VS, S, M, L, VL, C1, C2, C3, C4, and C5

TABLE S.IV
COMPARATIVE RESULTS BETWEEN MTDE-L2T AND OTHER IMPLICIT EMT ALGORITHMS WITH AGENTS LEARNED SEPARATELY ON DIFFERENT

PROBLEM SETS AT GENERATION=Groll

Problem AEMTO MFDE MKTDE MTDE-AD MTDE-B

VS 100/0/0(+) 100/0/0(+) 86/7/7(+) 99/1/0(+) 97/3/0(+)
S 94/6/0(+) 88/8/4(+) 66/15/19(+) 88/11/1(+) 93/7/0(+)
M 87/13/0(+) 72/15/13(+) 50/17/33(+) 84/14/2(+) 82/16/2(+)
L 79/19/2(+) 51/29/20(+) 46/24/30(+) 71/26/3(+) 46/49/5(+)

VL 50/48/2(+) 31/47/22(+) 35/34/31(+) 45/54/1(+) 2/92/6(−)
C1 74/26/0(+) 61/29/10(+) 44/30/26(+) 63/36/1(+) 40/58/2(+)
C2 47/48/5(+) 51/33/16(+) 32/26/42(−) 34/59/7(+) 16/75/9(+)
C3 35/56/9(+) 37/42/21(+) 34/30/36(−) 34/51/15(+) 9/87/4(+)
C4 42/44/14(+) 43/39/18(+) 46/21/33(+) 35/51/14(+) 9/83/8(+)
C5 45/48/7(+) 37/46/17(+) 45/27/28(+) 44/46/10(+) 7/83/10(−)
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TABLE S.V
COMPARATIVE RESULTS BETWEEN THE PROPOSED L2T-BASED AND OTHER IMPLICIT EMT ALGORITHMS AT GENERATION=Gmax

Problem
MTDE-L2T vs MTGA-L2T vs

AEMTO MFDE MKTDE MTDE-AD MTDE-B GMFEA MFEA MFEA-AKT MFEA2 MTEA-AD

BBOB1 35/55/10(+) 44/52/4(+) 59/26/15(+) 40/50/10(+) 29/61/10(+) 66/26/8(+) 64/30/6(+) 66/27/7(+) 62/35/3(+) 54/23/23(+)
BBOB2 41/54/5(+) 44/50/6(+) 66/28/6(+) 40/53/7(+) 26/60/14(+) 63/30/7(+) 65/30/5(+) 65/31/4(+) 67/31/2(+) 63/14/23(+)
BBOB3 0/100/0(=) 0/100/0(=) 0/100/0(=) 7/93/0(+) 0/100/0(=) 100/0/0(+) 100/0/0(+) 100/0/0(+) 100/0/0(+) 100/0/0(+)
BBOB4 67/32/1(+) 10/85/5(+) 100/0/0(+) 57/43/0(+) 37/62/1(+) 100/0/0(+) 100/0/0(+) 100/0/0(+) 100/0/0(+) 100/0/0(+)
BBOB5 1/88/11(−) 3/80/17(−) 3/79/18(−) 2/92/6(−) 4/88/8(−) 51/44/5(+) 62/33/5(+) 58/36/6(+) 39/59/2(+) 46/49/5(+)
BBOB6 30/70/0(+) 38/62/0(+) 81/19/0(+) 30/69/1(+) 1/81/18(−) 8/71/21(−) 7/72/21(−) 9/77/14(−) 28/68/4(+) 6/64/30(−)
BBOB7 4/93/3(+) 3/92/5(−) 2/95/3(−) 2/92/6(−) 4/89/7(−) 11/82/7(+) 13/78/9(+) 14/83/3(+) 23/74/3(+) 0/29/71(−)
BBOB8 8/86/6(+) 3/93/4(−) 73/27/0(+) 10/87/3(+) 6/88/6(=) 29/70/1(+) 29/71/0(+) 16/80/4(+) 16/81/3(+) 58/42/0(+)
BBOB9 41/53/6(+) 36/45/19(+) 54/28/18(+) 41/53/6(+) 26/59/15(+) 51/37/12(+) 59/32/9(+) 56/29/15(+) 65/25/10(+) 54/20/26(+)

BBOB10 60/32/8(+) 36/41/23(+) 40/30/30(+) 68/25/7(+) 36/41/23(+) 77/13/10(+) 80/16/4(+) 79/16/5(+) 80/14/6(+) 58/13/29(+)
BBOB11 96/0/4(+) 12/88/0(+) 2/93/5(−) 96/0/4(+) 9/91/0(+) 99/0/1(+) 99/0/1(+) 99/0/1(+) 99/0/1(+) 97/0/3(+)
BBOB12 33/61/6(+) 0/4/96(−) 0/9/91(−) 40/58/2(+) 30/65/5(+) 97/0/3(+) 99/0/1(+) 100/0/0(+) 100/0/0(+) 98/1/1(+)
BBOB13 6/80/14(−) 10/86/4(+) 15/81/4(+) 6/90/4(+) 11/87/2(+) 97/0/3(+) 96/0/4(+) 96/0/4(+) 96/0/4(+) 90/0/10(+)
BBOB14 11/88/1(+) 9/88/3(+) 8/87/5(+) 3/93/4(−) 6/90/4(+) 5/83/12(−) 3/87/10(−) 8/87/5(+) 18/82/0(+) 0/31/69(−)
BBOB15 7/88/5(+) 12/81/7(+) 19/78/3(+) 14/82/4(+) 3/85/12(−) 26/49/25(+) 25/51/24(+) 21/55/24(−) 25/55/20(+) 22/54/24(−)

TABLE S.VI
COMPARATIVE RESULTS BETWEEN THE PROPOSED L2T-BASED AND EXPLICIT EMT ALGORITHMS AT DIFFERENT GENERATION G

Problem
MTDE-L2T vs MTDE-EA MTGA-L2T vs ATMFEA

G = Groll G = Gmax G = Groll G = Gmax

BBOB1 61/39/0(+) 39/52/9(+) 77/15/8(+) 59/31/10(+)
BBOB2 62/37/1(+) 40/53/7(+) 76/18/6(+) 65/30/5(+)
BBOB3 98/2/0(+) 0/100/0(=) 100/0/0(+) 100/0/0(+)
BBOB4 22/77/1(+) 61/39/0(+) 100/0/0(+) 100/0/0(+)
BBOB5 12/84/4(+) 4/91/5(−) 74/15/11(+) 58/32/10(+)
BBOB6 16/80/4(+) 30/68/2(+) 8/63/29(−) 6/70/24(−)
BBOB7 5/94/1(+) 1/89/10(−) 29/69/2(+) 16/78/6(+)
BBOB8 34/66/0(+) 6/90/4(+) 100/0/0(+) 28/72/0(+)
BBOB9 33/61/6(+) 41/49/10(+) 51/30/19(+) 50/22/28(+)

BBOB10 42/41/17(+) 50/38/12(+) 70/22/8(+) 73/14/13(+)
BBOB11 94/1/5(+) 96/1/3(+) 100/0/0(+) 99/0/1(+)
BBOB12 37/62/1(+) 36/61/3(+) 57/37/6(+) 99/0/1(+)
BBOB13 59/38/3(+) 10/82/8(+) 98/0/2(+) 94/0/6(+)
BBOB14 7/93/0(+) 8/87/5(+) 5/85/10(−) 2/55/43(−)
BBOB15 16/78/6(+) 12/77/11(+) 21/55/24(−) 22/51/27(−)

TABLE S.VII
COMPARATIVE RESULTS OF TRAINED-FROM-SCRATCH AND FINE-TUNED MTDE-L2T AND OTHER IMPLICIT EMT ALGORITHMS AT

GENERATION=Gmax

Problem
MTDE-L2T-w/o-FT vs

AEMTO MFDE MKTDE MTDE-AD MTDE-B MTDE-EA

VS 97/2/1(+) 77/3/20(+) 56/13/31(+) 93/5/2(+) 92/7/1(+) 96/3/1(+)
S 91/9/0(+) 70/8/22(+) 53/11/36(+) 85/13/2(+) 87/12/1(+) 88/10/2(+)
M 84/15/1(+) 67/9/24(+) 47/15/38(+) 84/13/3(+) 77/21/2(+) 88/11/1(+)
L 79/15/6(+) 59/14/27(+) 49/12/39(+) 79/16/5(+) 45/50/5(+) 82/15/3(+)

VL 49/45/6(+) 27/39/34(−) 28/29/43(−) 43/43/14(+) 3/93/4(−) 48/47/5(+)
C1 69/21/10(+) 53/13/34(+) 35/16/49(−) 68/26/6(+) 37/60/3(+) 69/29/2(+)
C2 44/46/10(+) 41/20/39(+) 26/21/53(−) 45/44/11(+) 22/76/2(+) 56/38/6(+)
C3 41/50/9(+) 28/31/41(−) 31/22/47(−) 42/48/10(+) 10/87/3(+) 46/48/6(+)
C4 41/43/16(+) 35/27/38(−) 37/13/50(−) 38/39/23(+) 7/83/10(−) 52/43/5(+)
C5 43/48/9(+) 31/34/35(−) 34/22/44(−) 46/37/17(+) 6/86/8(−) 53/44/3(+)

BBOB9 21/74/5(+) 36/31/33(+) 49/27/24(+) 29/63/8(+) 4/88/8(−) 16/80/4(+)
BBOB10 53/46/1(+) 34/23/43(−) 33/25/42(−) 48/51/1(+) 10/83/7(+) 52/45/3(+)

Problem
MTDE-L2T-FT vs

AEMTO MFDE MKTDE MTDE-AD MTDE-B MTDE-EA

VS 87/8/5(+) 82/14/4(+) 41/21/38(+) 91/6/3(+) 78/18/4(+) 91/7/2(+)
S 88/10/2(+) 80/17/3(+) 45/21/34(+) 88/10/2(+) 72/24/4(+) 91/8/1(+)
M 87/9/4(+) 81/15/4(+) 52/17/31(+) 89/9/2(+) 76/23/1(+) 88/9/3(+)
L 89/9/2(+) 75/20/5(+) 52/22/26(+) 87/7/6(+) 69/26/5(+) 89/8/3(+)

VL 72/13/15(+) 55/32/13(+) 51/25/24(+) 67/19/14(+) 47/42/11(+) 80/14/6(+)
C1 68/15/17(+) 62/26/12(+) 44/25/31(+) 69/17/14(+) 56/35/9(+) 83/10/7(+)
C2 53/24/23(+) 49/42/9(+) 28/31/41(−) 49/27/24(+) 34/50/16(+) 61/36/3(+)
C3 55/28/17(+) 39/44/17(+) 43/27/30(+) 61/24/15(+) 35/51/14(+) 69/26/5(+)
C4 65/12/23(+) 50/35/15(+) 38/22/40(−) 59/16/25(+) 50/37/13(+) 75/13/12(+)
C5 63/24/13(+) 48/42/10(+) 53/24/23(+) 65/21/14(+) 40/48/12(+) 65/27/8(+)

BBOB9 40/49/11(+) 33/45/22(+) 54/29/17(+) 40/51/9(+) 29/63/8(+) 39/53/8(+)
BBOB10 67/24/9(+) 35/41/24(+) 36/29/35(+) 63/26/11(+) 39/58/3(+) 66/26/8(+)
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TABLE S.VIII
COMPARATIVE RESULTS BETWEEN THE LEARNED AGENT AND PREDEFINED AGENTS AT GENERATION=Gmax

Problem MTDE-f(.5,0,1) MTDE-f(.5,1,0) MTDE-f(.5,1,1) MTDE-f(1,0,1) MTDE-f(1,1,0) MTDE-f(1,1,1) MTDE-r STDE

VS 76/6/18(+) 97/1/2(+) 99/0/1(+) 74/5/21(+) 100/0/0(+) 98/0/2(+) 92/6/2(+) 95/5/0(+)
S 69/9/22(+) 98/2/0(+) 97/3/0(+) 68/8/24(+) 100/0/0(+) 100/0/0(+) 91/8/1(+) 88/11/1(+)
M 67/9/24(+) 92/7/1(+) 90/9/1(+) 67/9/24(+) 100/0/0(+) 100/0/0(+) 90/8/2(+) 72/25/3(+)
L 57/16/27(+) 84/10/6(+) 80/11/9(+) 57/15/28(+) 91/1/8(+) 92/0/8(+) 75/13/12(+) 44/52/4(+)

VL 28/38/34(−) 57/26/17(+) 52/28/20(+) 26/37/37(−) 81/4/15(+) 78/4/18(+) 43/23/34(+) 7/91/2(+)
C1 51/14/35(+) 75/16/9(+) 80/11/9(+) 51/14/35(+) 93/2/5(+) 89/1/10(+) 66/19/15(+) 46/46/8(+)
C2 32/26/42(−) 52/31/17(+) 51/29/20(+) 37/20/43(−) 70/13/17(+) 66/14/20(+) 53/29/18(+) 24/70/6(+)
C3 31/30/39(−) 63/24/13(+) 62/29/9(+) 35/23/42(−) 84/7/9(+) 83/7/10(+) 58/31/11(+) 19/78/3(+)
C4 36/29/35(+) 55/25/20(+) 58/24/18(+) 35/20/45(−) 78/2/20(+) 74/6/20(+) 44/29/27(+) 11/84/5(+)
C5 26/35/39(−) 60/25/15(+) 52/30/18(+) 31/26/43(−) 80/8/12(+) 79/9/12(+) 51/32/17(+) 5/93/2(+)

BBOB1 37/57/6(+) 80/19/1(+) 74/24/2(+) 54/42/4(+) 92/7/1(+) 86/11/3(+) 76/21/3(+) 31/58/11(+)
BBOB2 46/51/3(+) 80/16/4(+) 77/21/2(+) 50/42/8(+) 92/6/2(+) 87/11/2(+) 68/27/5(+) 42/52/6(+)
BBOB9 36/49/15(+) 63/25/12(+) 63/25/12(+) 47/35/18(+) 72/21/7(+) 72/18/10(+) 51/29/20(+) 29/59/12(+)

BBOB10 35/42/23(+) 74/18/8(+) 72/18/10(+) 37/36/27(+) 72/15/13(+) 73/16/11(+) 62/18/20(+) 36/34/30(+)

TABLE S.IX
COMPARATIVE RESULTS OF THE ABLATION STUDY AT GENERATION=Gmax

Problem L2T-w/o-a1 L2T-w/o-a2 L2T-w/o-a3 L2T-w/o-Oc L2T-w/o-Ot L2T-w/o-FE L2T-w/o-rconv L2T-w/o-rKT

VS 67/26/7(+) 90/7/3(+) 76/22/2(+) 23/50/27(−) 51/47/2(+) 95/4/1(+) 14/58/28(−) 90/7/3(+)
S 47/28/25(+) 86/12/2(+) 76/22/2(+) 26/71/3(+) 39/52/9(+) 85/14/1(+) 19/76/5(+) 84/16/0(+)
M 24/64/12(+) 74/23/3(+) 62/35/3(+) 12/86/2(+) 78/19/3(+) 76/21/3(+) 8/79/13(−) 59/36/5(+)
L 27/59/14(+) 47/47/6(+) 52/43/5(+) 19/74/7(+) 48/48/4(+) 46/49/5(+) 29/59/12(+) 48/37/15(+)

VL 2/83/15(−) 5/88/7(−) 8/89/3(+) 5/89/6(−) 6/88/6(=) 4/91/5(−) 5/92/3(+) 11/84/5(+)
C1 27/64/9(+) 38/55/7(+) 43/52/5(+) 41/55/4(+) 50/48/2(+) 32/59/9(+) 33/63/4(+) 24/63/13(+)
C2 21/71/8(+) 28/66/6(+) 23/70/7(+) 20/78/2(+) 22/72/6(+) 20/72/8(+) 19/69/12(+) 35/54/11(+)
C3 14/72/14(=) 15/77/8(+) 15/81/4(+) 15/82/3(+) 15/84/1(+) 14/79/7(+) 16/81/3(+) 23/70/7(+)
C4 8/88/4(+) 9/87/4(+) 10/88/2(+) 7/91/2(+) 10/87/3(+) 6/93/1(+) 7/90/3(+) 17/79/4(+)
C5 3/90/7(−) 6/88/6(=) 4/92/4(=) 6/86/8(−) 6/86/8(−) 10/86/4(+) 4/92/4(=) 10/84/6(+)

BBOB1 17/78/5(+) 31/59/10(+) 29/58/13(+) 10/87/3(+) 35/51/14(+) 30/60/10(+) 8/87/5(+) 33/57/10(+)
BBOB2 17/74/9(+) 31/58/11(+) 29/65/6(+) 6/91/3(+) 36/55/9(+) 40/52/8(+) 13/85/2(+) 30/58/12(+)
BBOB9 23/72/5(+) 23/60/17(+) 31/61/8(+) 17/75/8(+) 26/63/11(+) 31/55/14(+) 9/79/12(−) 26/63/11(+)

BBOB10 11/68/21(−) 36/38/26(+) 55/36/9(+) 11/65/24(−) 38/39/23(+) 38/36/26(+) 13/68/19(−) 38/40/22(+)

TABLE S.X
INVESTIGATION RESULTS ON PARAMETER b2 AT GENERATION=Groll

Problem b2 = 0.1 b2 = 0.5 b2 = 1 b2 = 5 b2 = 10 b2 = 50 b2 = 100

BBOB1 6.19 6.25 6.02 4.17 4.32 4.62 4.43
BBOB2 6.16 5.98 5.45 3.93 4.39 4.53 4.94
BBOB3 5.90 5.49 5.00 5.82 3.92 4.06 5.30
BBOB4 4.39 5.48 5.44 4.93 5.44 4.91 4.65
BBOB5 4.47 4.81 5.50 5.31 5.02 4.92 4.92
BBOB6 5.21 5.70 4.81 5.05 5.38 5.20 5.15
BBOB7 5.00 4.86 5.22 4.86 5.24 5.12 4.56
BBOB8 4.94 5.32 5.11 5.05 5.06 4.59 5.78
BBOB9 5.50 5.34 5.24 5.06 4.55 4.81 5.20
BBOB10 5.19 5.71 5.26 4.86 4.26 5.02 4.67
BBOB11 6.02 5.62 5.69 4.78 4.40 3.67 5.01
BBOB12 6.14 6.67 5.60 5.32 3.07 4.79 5.03
BBOB13 5.09 5.56 5.85 5.48 4.00 4.46 5.31
BBOB14 4.99 4.90 5.27 4.96 5.37 5.08 5.18
BBOB15 4.92 5.15 5.07 5.72 4.95 4.98 4.90

# best 2 1 1 2 5 2 2

TABLE S.XI
INVESTIGATION RESULTS ON PARAMETER b2 AT GENERATION=Gmax

Problem b2 = 0.1 b2 = 0.5 b2 = 1 b2 = 5 b2 = 10 b2 = 50 b2 = 100

BBOB1 5.59 5.71 5.98 4.67 4.39 4.50 4.32
BBOB2 6.16 5.72 5.54 4.36 4.19 4.02 5.05
BBOB3 2.98 3.98 5.02 6.00 6.96 7.96 8.96
BBOB4 6.77 7.00 7.07 3.32 3.43 3.59 3.58
BBOB5 4.97 4.82 5.47 4.66 5.27 4.78 4.94
BBOB6 5.55 6.13 4.95 4.45 5.25 4.88 5.14
BBOB7 5.09 4.87 5.27 4.77 5.10 5.60 4.55
BBOB8 5.54 5.24 5.10 5.31 4.76 4.54 4.31
BBOB9 5.66 5.94 5.29 4.61 4.27 4.38 4.74
BBOB10 6.16 6.23 6.26 4.04 4.22 4.08 4.41
BBOB11 5.82 5.66 5.57 4.44 4.78 3.28 4.87
BBOB12 6.62 7.31 6.35 5.79 2.72 4.16 3.70
BBOB13 5.13 5.06 4.95 4.87 5.19 5.04 5.39
BBOB14 4.72 4.91 5.36 5.06 5.34 4.71 5.11
BBOB15 4.85 5.17 4.94 5.72 5.04 5.00 4.94

# best 2 0 0 5 2 3 3
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TABLE S.XII
THE RESULTS OF MTDE-L2T AND MTGA-L2T COMPARING WITH PEER EMT ALGORITHMS ON HPO PROBLEMS

Problem
MTDE-L2T vs

AEMTO MFDE MKTDE MTDE-AD MTDE-B MTDE-EA

SVM 16/79/5(+) 11/77/12(−) 11/68/21(−) 12/85/3(+) 8/85/7(+) 44/50/6(+)
XGBoost 8/89/3(+) 9/90/1(+) 72/18/10(+) 8/91/1(+) 4/93/3(+) 17/78/5(+)

FCNet 10/88/2(+) 8/91/1(+) 33/53/14(+) 6/93/1(+) 1/94/5(−) 7/91/2(+)

Problem
MTGA-L2T vs

ATMFEA GMFEA MFEA MFEA-AKT MFEA2 MTEA-AD

SVM 56/19/25(+) 52/25/23(+) 52/20/28(+) 69/12/19(+) 68/12/20(+) 46/38/16(+)
XGBoost 67/17/16(+) 69/14/17(+) 69/14/17(+) 72/14/14(+) 81/9/10(+) 70/17/13(+)

FCNet 15/61/24(−) 18/73/9(+) 18/71/11(+) 22/66/12(+) 26/68/6(+) 7/78/15(−)
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